The Cell Membrane

Overview
- Cell membrane separates living cell from nonliving surroundings
 - thin barrier = 8nm thick
- Controls traffic in & out of the cell
 - selectively permeable
 - allows some substances to cross more easily than others
 - hydrophobic vs hydrophilic
- Made of phospholipids, proteins & other macromolecules

Phospholipids
- Fatty acid tails
 - hydrophobic
- Phosphate group head
 - hydrophilic
- Arranged as a bilayer

Phospholipid bilayer
- polar hydrophilic heads
- nonpolar hydrophobic tails
- polar hydrophilic heads

Phospholipid bilayer
- polar hydrophilic heads
- nonpolar hydrophobic tails
- polar hydrophilic heads

More than lipids...
- In 1972, S.J. Singer & G. Nicolson proposed that membrane proteins are inserted into the phospholipid bilayer

The Fluid Mosaic Model
- “A sea of phospholipids with floating icebergs of protein”
- Membrane composed of different components
- Asymmetrical b/c of different proteins on either side of membrane
- Lateral protein movement (Frye & Edidin Heterocaryon Expt)
 - proteins do NOT flip-flop
 - membrane is always changing its look
The Fluid Mosaic Model

- **Freeze-Fracture Technique**

Membrane is a collage of proteins & other molecules embedded in the fluid matrix of the lipid bilayer

- **Extracellular fluid**
- **Glycoprotein**
- **Glycolipid**
- **Cholesterol**
- **Cytoplasm**
- **Filaments of cytoskeleton**

Membrane fat composition varies

- **Fat composition affects flexibility**
 - membrane must be fluid & flexible
 - about as fluid as thick salad oil
 - % unsaturated fatty acids in phospholipids
 - keep membrane less viscous
 - cold-adapted organisms, like winter wheat
 - increase % in autumn
 - cholesterol in membrane

Membrane Proteins

- **Proteins determine membrane’s specific functions**
 - cell membrane & organelle membranes each have unique collections of proteins
- **Membrane proteins:**
 - **Peripheral proteins**
 - loosely bound to surface of membrane
 - cell surface identity marker (antigens)
 - **Integral proteins**
 - penetrate lipid bilayer, usually across whole membrane
 - transmembrane protein
 - transport proteins
 - channels, permeases (pumps)

Why are proteins the perfect molecule to build structures in the cell membrane?

Classes of amino acids

What do these amino acids have in common?

- **Nonpolar & hydrophobic**
Classes of amino acids

What do these amino acids have in common?

Polar & hydrophilic

Proteins domains anchor molecule

- **Within membrane**
 - nonpolar amino acids
 - hydrophobic
 - anchors protein into membrane
 - On outer surfaces of membrane
 - polar amino acids
 - hydrophilic
 - extend into extracellular fluid & into cytosol

Examples

- Water channel in bacteria
- Retinal chromophore
- α-helices in the cell membrane
- Proton pump channel in photosynthetic bacteria
- β-pleated sheets
- Bacterial outer membrane

Many Functions of Membrane Proteins

- Outside
 - Plasma membrane
 - Transporter
 - Enzyme activity
 - Cell surface identity marker

- Inside
 - Cell adhesion
 - Attachment to the cytoskeleton

Membrane carbohydrates

- Play a key role in cell-cell recognition
 - ability of a cell to distinguish one cell from another
 - antigens
 - important in organ & tissue development
 - basis for rejection of foreign cells by immune system

Any Questions??
Diffusion

- 2nd Law of Thermodynamics governs biological systems
 - universe tends towards disorder (entropy)

Movement across the Cell Membrane

Diffusion

- movement from high → low concentration

Diffusion across cell membrane

- Cell membrane is the boundary between inside & outside...
 - separates cell from its environment
 - Can it be an impenetrable boundary? NO!

Diffusion through phospholipid bilayer

- What molecules can get through directly?
 - fats & other lipids
 - water & small polar molecules
- What molecules can NOT get through directly?
 - Large polar molecules
 - glucose, amino acids
 - ions
 - salts
 - large molecules
 - starches, proteins

Channels through cell membrane

- Membrane becomes semi-permeable with protein channels
 - specific channels allow specific material across cell membrane
Facilitated Diffusion
- Diffusion through protein channels
 - channels move specific molecules across cell membrane
 - no energy needed
- Open channel = fast transport
- High to low = facilitated diffusion

Active Transport
- Cells may need to move molecules against concentration gradient
 - shape change transports solute from one side of membrane to other
 - Protein "pump"
 - "costs" energy = ATP

Getting through cell membrane
- Passive Transport
 - Simple diffusion
 - diffusion of nonpolar, hydrophobic molecules
 - Lipids
 - High to low concentration gradient
 - Facilitated transport
 - diffusion of polar, hydrophilic molecules
 - through a protein channel
 - High to low concentration gradient
- Active transport
 - diffusion against concentration gradient
 - Low to high
 - Uses a protein pump
 - Requires ATP

Transport summary
- Simple diffusion
- Facilitated diffusion
- Active transport

How about large molecules?
- Moving large molecules into & out of cell
 - through vesicles & vacuoles
 - Endocytosis
 - Phagocytosis = "cellular eating"
 - Pinocytosis = "cellular drinking"
 - Exocytosis
Endocytosis

- phagocytosis: fuse with lysosome for digestion
- pinocytosis: non-specific process
- receptor-mediated endocytosis: triggered by molecular signal

Osmosis is diffusion of water

- Water is very important to life, so we talk about water separately
- Diffusion of water from high concentration of water to low concentration of water
 - across a semi-permeable membrane

Concentration of water

- Direction of osmosis is determined by comparing total solute concentrations
 - Hypertonic: more solute, less water
 - Hypotonic: less solute, more water
 - Isotonic: equal solute, equal water

Managing water balance

- Cell survival depends on balancing water uptake & loss
 - Hypotonic solution: shrivelled
 - Isotonic solution: normal
 - Hypertonic solution: plasmolyzed

Managing water balance

- Isotonic
 - animal cell immersed in mild salt solution
 - example: blood cells in blood plasma
 - problem: none
 - no net movement of water
 - flows across membrane equally, in both directions
 - volume of cell is stable
Managing water balance

- **Hypotonic**
 - A cell in fresh water
 - Example: *Paramecium*
 - Problem: gains water, swells & can burst
 - Water continually enters *Paramecium* cell
 - Solution: contractile vacuole
 - Pumps water out of cell
 - ATP
 - Plant cells
 - Turgid

- **Hypertonic**
 - A cell in salt water
 - Example: Shellfish
 - Problem: lose water & die
 - Solution: take up water or pump out salt
 - Plant cells
 - Plasmolysis = wilt

Water regulation

- **Contractile vacuole in Paramecium**
 - ATP

Aquaporins

- Water moves rapidly into & out of cells
 - Evidence that there were water channels

Osmosis...

- Cell (compared to beaker) hypotonic or hypertonic
- Beaker (compared to cell) hypotonic or hypertonic
- Which way does the water flow? In or out of cell

Any Questions??